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We study the chaotic scattering of charged particles in an open three-disk billiard subject to a
uniform magnetic field. We identify qualitatively distinct behaviors depending on the field strength:
hyperbolic, pruned, Kol’mogorov-Arnol’d-Moser torus dominated, and regular phases. The hierar-
chical structure of the chaotic set and the time delay function is investigated. Our main finding
is that with increasing field strength the degree of chaoticity decreases while the complexity of the
small scale structures may increase. Possible consequences of our results for the ballistic transport

in microjunctions are discussed.
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I. INTRODUCTION

In recent years, chaotic scattering has become a subject
of intensive research because of both a strong theoretical
interest and a wide range of potential applications [1-12].
The time a trajectory spends in the scattering region de-
pends in such cases sensitively on the initial condition
(e.g., on the impact parameter). The delay time distri-
bution as a function of the impact parameter possesses
singularities on a fractal set of dimension Dy <1 [7,8,2].
It is now understood that chaotic scattering is due to the
existence of a nonattracting chaotic set [2] in phase space,
which may be viewed as the closure of all unstable peri-
odic orbits in the scattering region. The time delay func-
tion takes on an infinite value whenever the initial condi-
tion is placed on the stable manifold of any localized or-
bit. Since these orbits are organized in a fractal structure
on the chaotic set, the infinities in the time delay func-
tion appear in the same fractal pattern. A study of the
time delay function [9,12] provides thus the possibility
to obtain important quantities characterizing the chaotic
set, in particular its dimension, entropy, Lyapunov ex-
ponent, and escape rate. The singularities of the time
delay function serve as a fingerprint of the chaotic set on
the impact parameter axis. Because of the Hamiltonian
character, in two-degree-of-freedom scattering processes
the dimension of the chaotic set on a Poincaré plane is

So far, previous studies have concentrated mainly on
scattering processes without any external field. The aim
of this paper is to investigate how the presence of an ex-
ternal field influences the classical properties of chaotic
scattering. We imagine that charged particles moving
in a given scattering potential containing several poten-
tial hills become subject to a uniform magnetic field ap-
plied in the scattering region. This leads to the break-
down of time reversal symmetry (by simultaneously pre-
serving the Hamiltonian character of the motion) and,
consequently, to the appearance of a preferred sign of
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curvature in the trajectories. The form of the scatter-
ing function and the structure of the chaotic set depend
on the field. The presence of the field also modifies the
position and stability of periodic orbits. Moreover, a suf-
ficiently strong field can stabilize periodic orbits which
are unstable in the field-free case. Such orbits become
nonaccessible for scattering trajectories. It is also clear
that strong fields can make the motion regular by forcing
particles to wind around one potential hill only. Because
of the localization, they cannot interact with other parts
of the potential. Thus the external field can be used to
make the scattering process nonchaotic.

We are interested in the situation where in the field-
free case the chaotic scattering at a given particle en-
ergy is hyperbolic [2]. This means that all periodic or-
bits possess strictly positive Lyapunov exponents and
the symbol sequences associated with them form a com-
plete symbolic encoding of the chaotic set. Hyperbolic-
ity implies that there are no Kol’mogorov-Arnol’d-Moser
(KAM) surfaces in the phase space. We shall point out
that the following scenario is observed by switching on a
magnetic field. A weak field can only deform the chaotic
set, but does not destroy hyperbolicity because of its
structural stability. However, even a weak field makes
the process quantitatively less chaotic. This is expressed
by the change of characteristic quantities: the average
Lyapunov exponent A on the chaotic set decreases, the
average chaotic lifetime 7 and the fractal dimension of
singularities Dy increase, while the topological entropy
K stays unchanged. At intermediate field strengths hy-
perbolicity breaks down and pruning [13] sets in, i.e.,
more and more periodic orbits become forbidden. For
systems with smooth potentials this is accompanied by
the appearance of stable periodic orbits and KAM sur-
faces around them, but the latter are hardly visible at
first. Nonhyperbolicity is first reflected in a decrease of
the topological entropy Ko marking a further reduction
of chaoticity. By increasing the field strength further,
the KAM surfaces become dominating: many trajecto-
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ries will stick to them so that the average Lyapunov ex-
ponent X tends toward zero. The average lifetime 7 is
defined as the reciprocal value of the decay rate (some-
times called escape rate) of the exponential lifetime distri-
bution. Since the probability of finding a given lifetime
is characterized by a power law in the presence of tori
[14,12], the escape rate is formally zero in such cases;
the lifetime may be infinite or finite depending on the
exponent in the power law. Simultaneously, the fractal
dimension Dy is expected to tend to unity [12]. Thus hy-
perbolic chaos disappears in the asymptotic behavior on
the chaotic set, although on finite time scales it may be
observed numerically. This is also supported by the fact
that the topological entropy is still nonzero, i.e., there is
an infinity of periodic orbits in the system, many of them
being definitely hyperbolic. Finally, at strong fields, pe-
riodic orbits gradually disappear and the topological en-
tropy tends to zero. In the course of this process, chaos
becomes less and less important in the sense that the
supporting interval of the irregular part of the time de-
lay function gradually shrinks to zero.

As a model for studying this scenario in detail, it is
worth investigating the limit of infinitely steep potential
hills corresponding to an open billiard system. In partic-
ular, we choose the three-disk problem, the field-free ver-
sion of which has been extensively studied [15,16]. The
presence of hard walls makes the analytic derivation of
a Poincaré map possible, even in nonzero magnetic field,
and the numerical work becomes much easier than in
systems with smooth hills. The semiclassical treatment
of the three-disk problem in a magnetic field has been
worked out very recently [17], concentrating mainly on
parameter settings where the classical problem is hyper-
bolic. Our main aim here is to follow the field dependence
of the scattering process in the classical case which is
dominated by nonhyperbolic effects.

The paper is organized as follows. The model and its
most important features are described in Sec. II, while
the derivation of the explicit form of the Poincaré map is
relegated to Appendix A. Next, we study how the struc-
ture of the chaotic set changes with the magnetic field
B and compare it to the behavior of the corresponding
time delay function (Sec. III). By looking at the detailed
structure of the time delay distribution, different length
scales can be defined in some hierarchical organization.
The ones covering the singularities can best be used for
evaluating quantitative characteristics of the scattering
process by applying the method of the thermodynamic
formalism of dynamical systems. The results as a func-
tion of B are given in Sec. IV. Our conclusions are pre-
sented in Sec. V, where we also discuss the implications
of our results for a branch of mesoscopic phenomena: bal-
listic transport in semiconductor microstructures.

II. MODEL

The scattering potential of the system is provided by
the hard walls of three identical disks of radii r placed
on the corners of a regular triangle of edge size 2d. The
ratio d/r is fixed to 2/+/3 throughout this paper. The

midpoint of the triangle coincides with the origin of the
(z,v) plane, and our frame of reference is chosen as shown
in Fig. 1. We consider the motion of charged particles
subject to a uniform magnetic field perpendicular to the
(z,y) plane and restricted to a region around the disks
to be specified below. Particles of unit mass are injected
into the system with a given velocity which means fixing
the particle energy. Outside the region where the field is
nonzero, trajectories are straight line segments. As soon
as the particles enter the support of the field, they start
to move on circular orbits because of the Lorentz force
with an unchanged magnitude of the velocity. We choose
the units in such a way that the radius of all circular
orbits, the cyclotron radius, is

s= %, 1)

where B stands for the magnetic field strength. The signs
of charge and field are fixed so that the motion of the
particles along the arcs is counterclockwise.

Specular collisions with the walls induce jumps from
one circular orbit onto another one of the same cyclotron
radius s. Thus the whole scattering process inside the
interaction region can be kept track of by following the
positions of the centers of these circles. A jump in the
center position always occurs when the particle collides
with a disk. Thus the sequence of the circle centers pro-
vides a discrete map (a Poincaré map) associated with
the time continuous dynamics. Let P(p,q) denote the
orbit center at a given instant of time. After collision, a
new center P'(p’,q’) defines the particle trajectory. The
Poincaré map T connecting these coordinates relative to
the position of the disk on which the collision occurs,

(pl7 q,) = T(p, Q), (2)

FIG. 1. Geometry of the three-disk problem for
d = V/3,r = 1.5, a case we shall investigate throughout the
paper. The boundary of the support of the field is denoted
by dashed lines. Heavy lines define the central region outside
of which a particle immediately escapes.



1996

can be explicitly computed and is given in Appendix A
(see also Fig. 2). The complete dynamics can then be
described by subsequent applications of this map with the
proper disk center coordinates. p and ¢ are canonically
conjugate pairs and the plane (p, q) is taken as the phase
space of this process.

Just like in many other examples of nonlinear systems,
the knowledge of the symbolic dynamics is of essential
help in characterizing chaotic scattering. In the field-free
case of the three-disk problem, bouncing twice on the
same disk without hitting another one in between is im-
possible. Thus two symbols are sufficient for encoding.
With the exception of geometrical arrangements with
large disk radii the scattering is hyperbolic and all possi-
ble binary sequences are realized by the symbol sequences
of unstable periodic orbits. One may, for example, use
the code 0 for collisions turning the particle back toward
the disk where it started and the symbol 1 if it is re-
flected toward another disk. This encoding makes use of
the Cs, symmetry of the system and does not distinguish
between trajectories that are transformed into each other
by a rotation of 27 /3 around the origin or a reflection on
a symmetry axis of the triangle. In the presence of a
magnetic field, however, this symmetry is reduced to the
simple Cj5 rotational symmetry, which means one has to
use another encoding. We associate therefore codes with
circular orbit segments between two subsequent collisions
(rather than with the collisions themselves) so that 0 (1)
corresponds to an orbit segment connecting two disks in
a clockwise (counterclockwise) sense. At strong fields the
introduction of a third symbol may also be necessary to
describe two or more subsequent collisions on the same
disk. It is worth noting that time reversal and reflection
are individual symmetries only in the field-free case, but
the combined symmetry survives the application of the
magnetic field and becomes a nontrivial symmetry of the
system.

The basic periodic orbits, just like in the field-free case,
correspond to the bouncing motion between two neigh-
boring disks and to the permanent rotation between the
disks (see Fig. 3). The latter can be clockwise or coun-
terclockwise representing two different period-1 orbits en-
coded by 0 and 1, respectively, in the symbolic dynam-
ics described above. The bouncing between neighboring

FIG. 2. Diagram for the determination of the Poincaré map
(', q') = T(p,q) (for details, cf. Appendix A).
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FIG. 3. Basic periodic orbits. Full lines, bouncing orbits
01 between neighboring disks, d_ashed and dash-dotted lines,
time-reversed ring orbits 1 and 0, respectively.

disks is the only primitive period-2 orbit 01. It provides
an example of an orbit which is invariant, even in the
presence of a field, under the combined symmetry of time
reversal and reflection.

The period-2 orbit 01 is the bounded orbit which lies
furthest away from the origin. It is convenient to choose
the support of the magnetic field such that it contains
all three period-2 orbits 01 connected by the rotational
symmetry. Simultaneously, it is advantageous to avoid
the possibility of a complete winding around a given disk.
As a choice independent of the field strength, we take for
the support of the field the regular triangle defined by the
disk centers augmented by three semicircles of radii d sit-
ting on the edges (of length 2d) of the triangle. Note that
there also exists a central region (marked by heavy lines
in Fig. 1) with the property that any collision outside of
it results in an unbounded (escaping) trajectory.

By means of the map (2), one can explicitly com-
pute the Lyapunov exponents of the basic periodic or-
bits. We find that the fixed points 0 and 1 have different
field-dependent Lyapunov exponents, but the period-2
orbit 01 possesses the same exponent as in the field-
free case (cf. Appendix A). These effects, used in a sim-
ple approximation, are sufficient to predict the kind of
changes induced in the scattering characteristics at low

field strength at least (see Appendix B).

III. THE CHAOTIC SET
AND THE TIME DELAY FUNCTION

The hallmark of chaotic scattering in experimental
data is the presence of singularities arranged in a fractal
structure in the scattering functions [7,2]. To obtain, e.g.,
the time delay function, one takes a one-parameter family
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of initial conditions for scattering (a line or a simple curve
in configuration space or phase space) and measures the
time needed for the particle to leave the scattering region
as a function of the parameter. (Note that here and in
the following, time is measured in the number of bounces.)
The irregular behavior of this function is caused by the
existence of a chaotic set in phase space that contains all
the bounded orbits of the system. Although the struc-
ture of the singularities in the time delay function reflects
the structural properties of the chaotic set, the fact that
we choose a one-dimensional set of initial conditions may
cause this information to appear in a distorted form in
the time delay data. For this reason, it is also worth vi-
sualizing the chaotic set in the Poincaré section to learn
how it evolves as we vary the magnetic field and compar-
ing these changes to the observed behavior of the time
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delay function.

For the three-disk model introduced in Sec. II, the
chaotic set can be displayed using the center coordinates
(p,q) of circular segments taken from a long trajectory
staying in its close vicinity. To achieve this, we used
the so-called proper interior maximum triple method of
Nusse and Yorke [18] that yields a long sequence of very
small segments (called a saddle-straddle orbit) assumed
to straddle a true orbit on the chaotic set. In Figs. 4-6 we
plotted the approximation of the chaotic set obtained in
this way for a few values of the cyclotron radius s. Due to
the threefold symmetry of the system, the set consists,
in all cases, of three identical pairs of blocks arranged
along a circle of radius s centered at the origin. Within
the pairs, the blocks differ both in shape and size as a
consequence of the lack of reflectional and time reversal

(d)

number of collisions

X

FIG. 4. The chaotic set and the time delay function of the three-disk system for values of the cyclotron radius s when the
chaotic set is hyperbolic. (a) The chaotic set for s = 10; the inset shows the structure of the rightmost and upper right blocks
obtained by an _affine transformation. (b) The chaotic set for s = 1.25. The straight line, which is parallel to the unstable
manifold of the 01 orbit, illustrates the type of initial conditions taken for the time delay functions in this figure and throughout
the paper. (c) and (d) display the time delay functions corresponding to (a) and (b), respectively. X is the coordinate along
the line of initial conditions measured from the crossing with the p axis (X > 0 for ¢ > 0). The narrow hole marked by R in
(d) corresponds to the first-level large central hole of (c) (see text).
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symmetry; this difference, however, tends to diminish for
weak fields, i.e., s > r [see the inset of Fig. 4(a)]. Note
the axial symmetry of both the individual blocks and
the whole set: it is a consequence of the combined time
reversal-reflection symmetry mentioned in Sec. II.

To construct the time delay function, we take as initial
conditions (i.e., centers of the first circular parts of the
trajectories) a straight line segment in the (p,q) plane
that starts close to one point of the 01 cycle (a “corner”
point of the chaotic set) in the direction of its unstable
manifold [cf. the line drawn in Fig. 4(c)]. This segment,
which lies completely outside the chaotic set, corresponds
to trajectories starting from the line segment in configu-
ration space that connects the centers of the upper and
the lower disks with suitable directed velocities. For not
too weak fields, the line of initial conditions in phase
space crosses the stable manifold of the chaotic set. Thus
this line segment is suitable to obtain the time delay func-

]
-

number of collisions

FIG. 5. (a) The chaotic set for s = 1.0 when pruning has set
in. Some corners of the blocks have collided and disappeared.
(b) The corresponding time delay function. The first level
hole R of Fig. 4(d) is missing here.

tion for our model. (In the weak-field limit a circular arc
is more suitable for this purpose to follow the curvature
of the side of the chaotic set.) In addition to the plots of
the chaotic sets, Figs. 4-6 show the corresponding time
delay functions. The values of the cyclotron radius are
the same as the ones taken for the plots of the chaotic
set.

Figure 4 exhibits two cases where the chaotic set is hy-
perbolic with a complete binary encoding. The binary
organization of the set, which is obviously locally equiva-
lent to the direct product of two Cantor sets, is reflected
in the structure of the time delay function as well: A
cross section of the time delay function that contains all
points where the time delay is not shorter than 3 consists
of two large parts. Each of them disintegrates into two
smaller parts when we take the cross section at the next
higher value of the time delay, and these again disinte-
grate into smaller and smaller parts and so on for higher
and higher time delays, giving rise to a self-similar struc-
ture with hierarchical organization (Fig. 7). The “holes”
separating these blocks can be characterized by common
properties of trajectories starting out of them. In partic-
ular, all trajectories with initial condition inside a given
hole leave the scattering region through the same exit af-
ter the same number of iterations. That means the holes,
together with the smooth sections at the two sides of the
plot, can be labeled according to the possible exits: B for
backscattering (i.e., exit into the “channel” used for en-
tering) and L and R for the left and right exit channels,
respectively (see Fig. 7).

The level at which a hole appears is determined by the
number of collisions of its trajectories; e.g., the princi-
pal hole R at the first level contains trajectories with the
smallest possible number of collisions allowed by the ge-
ometry of the system. On the specified line segment of
initial conditions, the overall length of all the holes with
the same label, independent of their level in the hierar-
chy, is proportional to the transition probability from the
entrance (which is the same on the whole line segment)
to the exit with that label. Therefore, it provides us
with an important and experimentally accessible piece of
information. Since the lengths of the holes shrink expo-
nentially as we go higher in the hierarchy, it is sufficient
to identify and to measure the holes of the first few levels.

By increasing the magnetic field, i.e., decreasing the
cyclotron radius s, one reaches a critical value s; ~ 1.24
at which pruning sets in. The specific value of s; follows
from the geometric condition that some orbits become
tangential to a disk. Figure 5(a) shows the chaotic set
for a case with s < s;. In this plot, an important detail to
pay attention to is that pieces of the chaotic set have col-
lided in some regions, causing some orbits to disappear.
In the corresponding time delay plot [Fig. 5(b)] this phe-
nomenon is marked by the disappearance of some exits
in different regions. The first-level exit labeled R is, for
example, large in Fig. 4(c), becomes very narrow in Fig.
4(d), and has completely disappeared in Fig. 5(b). One
should also note that in these figures there is no sign of
the existence of stable orbits, which means that all the
allowed orbits in the system are still unstable.

If we reduce the cyclotron radius further, we enter the
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FIG. 6. The chaotic set for s = 0.9 (a) and 0.8 (b) with stable

respectively].

region 8 < s = 0.92 where some orbits become stable
(Fig. 6). These orbits sit in the middle of stable islands
surrounded by KAM tori (smooth curves of quasiperiodic
motion), which can easily be identified in the phase space
plot of the chaotic set as empty elliptical holes. It has
to be emphasized that the elliptic orbits and the inside
of the stable islands, around them are not accessible for
scattering trajectories. The boundary of the islands is,
however, visible because trajectories getting close to a
KAM torus can stay for an anomalously long time in
its neighborhood. This phenomenon is marked in the
time delay plot by the presence of dense, broadened parts
with high time delay values in the neighborhood of initial
conditions that lead to trajectories approaching a KAM
torus. Comparing these plots to those of the chaotic set,
however, we see that the signs of the existence of stable
islands are less easy to discern in the time delay function
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FIG. 7. The first few levels of the hierarchical organization
of the time delay function for s = 10 [see Fig. 4(c)]. The
intervals at level n correspond in this case to initial conditions
allowing at least n + 3 collisions with the disks. The holes
between the intervals are marked according to the exit their
trajectories take when leaving the system. The lengths of
these intervals are the input data to the thermodynamical
analysis of the scaling properties [see Eq. (3)].
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because it is the fine structure of the function around a
singularity that changes in this case.

An important effect of the magnetic field on scattering
is that the size of the region characterized by singular
behavior gradually shrinks for stronger field values. One
can observe this effect in the time delay plots (compare,
e.g., the scales and the portions of the singular parts in
Figs. 4-6). This shrinking behavior is also present in
the plots of the chaotic set: the area covered by the ba-
sic blocks decreases with s; in addition, in the cases with
KAM tori, a part of that area is lost to the stable islands,
leaving less room for chaotic scattering trajectories. This
is to be contrasted with another consequence mentioned
earlier, namely, the increase of the fractal dimension of
the singularities and the chaotic set. Together they imply
that strong fields reduce the overall weight of the chaotic
features in scattering. On the other hand, the remain-
ing chaotic regions show a denser and more complicated
structure.

IV. SCALING PROPERTIES

A quantity of central interest that reflects the hierar-
chical organization of chaotic scattering processes is the
free energy F(B). It characterizes the scaling behavior
seen by following trajectories with an increasing number
n of collisions inside the scattering center [9]. The free
energy is introduced in the spirit of the thermodynamic
formalism of dynamical systems [19-21] via the relation

N(n) 8
> ) ~eprer, ®)

where (3 is an arbitrary real number and n > 1. The lt(")
[ =1,...,N(n), where N(n) is the number of level-n

intervals] denote the lengths of intervals I.'(") lying along
a straight line chosen arbitrarily in the configurational
space and having the following common property: trajec-
tories starting out of these intervals with a given velocity
vector have at least n collisions with the disks before they
leave the scattering region. In other words, Ii(") are in-
tervals where the delay function is greater than or equal
to n (see also Fig. 7). Equivalently, one can also use the
length scales generated on a straight line in a Poincaré
plane by considering trajectories which do not leave a
certain neighborhood of the chaotic set earlier than at
the nth step [9]. In any case, it is an essential part of
the definition of the intervals at level n that trajectories
starting in the interior of a given interval should exhibit
the same qualitative behavior up to n steps: they possess
the same symbolic dynamics over n collisions. Obviously,
both the interval lengths I{™) and the free energy F(f)
depend on the magnetic field.

In hyperbolic cases the criterion of having the same
code inside an interval is automatically fulfilled since dif-
ferent symbol sequences of length n always mark intervals
well separated from each other in space by holes contain-
ing escaping trajectories with less than n collisions. After
pruning sets in, some exits might be forbidden (cf. Fig.
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5) and therefore intervals of level n characterized by dif-
ferent codes may come into contact. Consequently, the
intervals cannot be separated with certainty by investi-
gating the value of the time delay alone. The simultane-
ous use of the symbolic dynamics and the time delay is
thus essential in computing the free energy in the range
of the magnetic field where pruning is present, i.e., for
8 < 81.

It is worth summarizing briefly some basic features
of the free energy function [9]. The graph BF(B) vs
B is monotonically increasing with a nonpositive second
derivative. In the language of thermodynamics, this cor-
responds to the positivity of the specific heat. The value
of BF(B) taken at 1 and 0 immediately yields two ba-
sic characteristics of the scattering process: the escape
rate and the topological entropy, respectively. The es-
cape rate x describes the exponential decay of the total

interval length 3, 1™ with n. Thus
k= F(1). (@)

As long as no KAM tori are present, x is nonzero and
1/k yields the average chaotic lifetime 7 of scattering
trajectories. The topological entropy Ko can be defined
as the quantity characterizing the exponential growth of

the number N(n) of intervals I™ with the level index
n. Since the total number N(n) of intervals is obtained
from Eq. (3) at § = 0, we obtain

Ko = —[BF(B)] |p=o - (5)

Note that K also appears as the exponential growth rate
of the number of smooth pieces in the time delay function.

If the chaotic set is hyperbolic, length scales and nat-
ural measures of the intervals are proportional. There-
fore, the free energy also contains relevant information
concerning metric properties. It is easy to show that it
uniquely specifies the entire multifractal spectra of Lya-
punov exponents [22] (A\q), of entropies [23] (K,), and of
partial dimensions [24,25] (Dg) taken with respect to the
natural measure of the chaotic set. Due to the Hamilto-
nian character of the system, the partial dimensions along
the stable and unstable directions coincide. In nonhyper-
bolic cases when KAM surfaces are present, the relations
between the free energy and different multifractal spectra
still hold in a restricted range of the 3 variable, typically
for g < 1.

Here we shall concentrate on quantities which in our
view are the most important characteristics of the scat-
tering process. These are, in addition to the escape rate
x and the topological entropy Kj, the average Lyapunov
exponent ) and the fractal dimension Dy of the singular-
ities in the time delay function. They can be obtained as
the derivative of BF(83) taken at unity and as the value
of B where the free energy vanishes, respectively, i.e., as

A= [BFB) lp=1, (6)
and
F(Do) = 0. (M

In the presence of KAM surfaces, the delay time dis-
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tribution decays more slowly than exponentially [14,12]
and the long-time behavior is dominated by scattering
trajectories exhibiting quasiperiodic motion for a long
period of time. Consequently, both the escape rate and
the average Lyapunov exponent should be zero in the
asymptotic limit. On general grounds one expects [12]
that the fractal dimension tends to unity. Since the de-
cay of the length scales l,‘") is no longer exponential in n
and the length scales are not neccessarily proportional to
the natural measures, relations between the free energy
and multifractal spectra break down. Formula (5) for the
topological entropy is, however, still valid in this case.

Numerically, we have computed an approximate free
energy F(™)(G) at level n as

N(n)

> )

PFM(B) = —In ot ®)

> ()
i

which, because of Eq. (3), should tend to the exact free
energy F when n — oo. In a numerical computation, of
course, this limit cannot be performed. Fortunately, in
many cases the convergence is very fast and we obtain
rather accurate results by computing the approximate
free energy at some maximum value ngax = 15. The
error of the computation at a given 8 can be estimated
by analyzing the fluctuations of F(*) (B) in a range of n
below Nmax, say, in the interval (nmax — 5, max). With
the exception of cases where KAM tori exist, the relative
error turned out to be less than 1% in the entire range
of -5 < B <5.

The free energy obtained in this way is exhibited in
Fig. 8 at various field strengths in cases where no KAM
surfaces are present. As long as pruning does not appear
(i.e., for cyclotron radii s > s;), the topological entropy
is independent of the magnetic field and takes the value
In2. The qualitatively new effect of pruning is the de-
crease of the topological entropy, which can be seen in
the figure [cf. also Fig. 12(b) below]. It is worth empha-
sizing that the asymptotic slope for positive 3 of SF(()
decreases with increasing magnetic field. This implies
that the longest intervals shrink more and more slowly
or, equivalently, that the unstable periodic orbits with
the smallest Lyapunov exponent on the chaotic set be-
come less and less unstable.

Special attention has to be paid to cases where KAM
surfaces of macroscopic size are present. Since the es-
cape rate and the Lyapunov exponent are zero, while the
fractal dimension is unity, the free energy must reach the
horizontal axis at 8 = 1 with zero slope. From its mono-
tonic increase with a never positive second derivative it
follows that BF(f) is identically zero for any value 8 > 1.
Figure 9(a) shows the form one expects for the exact free
energy function. It has been computed by taking initial
points (p,q) in the phase space along a horizontal line
cutting through the KAM tori. Their existence implies
the appearance of intervals the length of which converges
very fast to the diameter of the torus and from then on
does not change at all with n. This leads immediately to
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FIG. 8. Free energy obtained for cyclotron radii s = 10.0
(full line), 1.25 (dotted), and 1.0 (dash-dotted) with ini-
tial conditions of the type shown in Fig. 4(b). We plotted
F(% defined by Eq. (8), which deviates from F(™ with
n = 10,...,13 by less than 1% in the 8 range investigated.
For comparison, the result of the four-scale approximation
(see Appendix B) is also shown for s = 10.0 (dashed line).
Note that the curvature of the graphs increases with decreas-
ing s. From the decreasing slope of the asymptote for 8 — oo
it follows that the escape rate and the average Lyapunov ex-
ponent decrease and the fractal dimension increases. The
topological entropy for s = 10.0 and 1.25 is Ko = In 2, but for
s = 1.0 it is definitely less.

the expected behavior.

The type of initial condition used here is obviously of
no relevance for scattering processes since initial coordi-
nates of particles are located in the region of asymptot-
ically free motion and thus cannot lie inside any torus.
We just chose it to illustrate what the exact free energy
looks like and to compare it with the results obtained
with more realistic initial conditions. The approximate
free energy F(™) is plotted in Fig. 9(b) for levels between
n = 10 and 14 obtained with initital coordinates corre-
sponding to scattering conditions. The tendency toward
zero is evident for B > 1, although the convergence is
rather slow. This reflects the presence of intervals, the
size of which decays algebraically with n. The slow and
not necessarily monotonous convergence may be due to
the fact that trajectories staying close to the KAM sur-
face contain qualitatively different circular segments that
contribute very differently to the finite-time Lyapunov
exponent of the orbit. A similarly slow convergence has
also been found at other values of the field strength.

It is instructive to look at the Legendre transform S(E)
of the free energy, which in the language of the thermo-
dynamic formalism corresponds to an entropy function
[9,10]. By plotting it for different values of the field
strength (Fig. 10), one can notice that the support of
S(FE) increases. This means that the spectrum of local
Lyapunov exponents is broadening until it reaches the
origin when KAM tori appear.

The fact that in a range of the inverse “temperature”
[ the free energy becomes identically zero corresponds
to the occurrence of a phase transition [26,27]. The slow
convergence with n can be interpreted as a consequence
of enhanced fluctuations. This is fully supported by com-
puting the fluctuations of the approximate free energy



2002

F() by taking different values of n at a fixed 3 and plot-
ting the results for different field strengths. Figure 11
exhibits the fluctuations of F(*)(1) corresponding to the
same initial conditions as in Fig. 9(b). The fluctuations
are negligible at first, but around the point s; =~ 0.92,
where KAM tori appear, they start to grow. Below s the
variance becomes larger by orders of magnitudes. Thus
we conclude that the free energy cannot be computed
numerically in a reliable way for 8 > 1 if KAM tori are
present in the system. For the values of escape rate, Lya-
punov exponent, and fractal dimension the analytically
known exact results have to be taken.

Finally, we summarize in Fig. 12 the field dependence
of the most important characteristic quantities in the
range investigated. The tendency found in the hyper-
bolic cases does not change: the dimension increases un-
til it reaches unity and the escape rate and the Lypunov
exponent decrease and become zero at the appearance
of macroscopic KAM tori. It is worth emphasizing that
this occurs at a cyclotron radius which is still much larger
than the critical radius s, = d — r = 0.23, where any sign
of chaoticity disappears.
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FIG. 9. Free energy in the presence of KAM surfaces
(s = 0.8). (a) Initial points taken along the (¢ = 0) line
intersecting the torus seen in Fig. 6(b). The quantity F(%
plotted here practically coincides with F(13). The behavior
F(B > 1) = 0 follows from the fact that the interval covering
the torus does not shrink with n. This form is expected to be
the asymptotic result for the free energy obtained with initial
conditions corresponding to scattering situations such as, e.g.,
in (b). (b) The free energy calculated from initial conditions
as in Fig. 8. Notice the slow convergence of F(™ (3 > 1),
n = 10,...,14, toward the asymptotic F(8) = 0 value.
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FIG. 10. The Legendre transform S(E) of SF(83) based
on Figs. 8 and 9(a). The support of the entropy function
S(F) is the set of all possible local Lyapunov exponents. Its
tendency to broaden with decreasing s is in agreement with
the bending of the 3F(3) curves seen in Fig. 8. The shortest
horizontal distances of these curves to the diagonal give the
corresponding escape rates k. The graph of the exact S(E)
should reach the origin with unit slope in the presence of tori.
This reflects the fact that the escape rate is zero and that
vanishing local Lyapunov exponents are present in a system
where the average Lyapunov exponent A is also zero. The
right-hand branches of the curves are not complete because
of convergence problems of 3F((3) at large negative 3 values.

The topogical entropy starts to decrease first at s;. It
is still different from zero at s, and vanishes only at a
much larger field strength B, = 1/s.. Consequently, in
the range s. < s < s, the scattering is still irregular and
the time delay function exhibits complicated structures.
Chaos is, however, no longer present in the sense that the
Lyapunov exponent of long trajectories vanishes. The
behavior in the range s, < s < s is reminiscent of what
is called strong intermittency [28] in dissipative systems.
Such processes are at the border between regular and
chaotic motion. The average Lyapunov exponent is zero,
the topological entropy is positive, while the temporal
correlations decay in an algebraic fashion, in contrast to
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FIG. 11. Fluctuations of the free energy versus cyclotron

radius. As a representative example the variance of F(™)(1)

computed for the range n = 10,...,14 is plotted. Note the

drastic increase around s; = 0.92 where tori appear, marking
a phase-transition-like phenomenon.



30 CHAOTIC SCATTERING IN THE PRESENCE OF AN.. ..

1.00 —T T T T

(a)

>|
.

0.75 |

0.50 .

0.25

1.0 T T T T T T

ost | -

08 = -

- h_—\.o\
0.7

0.6 / .
05 R

68 10 12 14 16 18 20
s

FIG. 12. Dependence of scattering characteristics on the
cyclotron radius: (a) x and X and (b) Do and Ko. The fact
that the measured values of x and A for s = 0.9 are greater
than 0 and that of Do is less than 1 is due to strong finite
size effects. The dashed lines show the expected asymptotic
behavior.

the exponential decay characterizing hyperbolic chaotic
states. In our system, the borderline behavior is due
to the presence of KAM surfaces on the nonattracting
invariant set.

V. DISCUSSION

Based on the example of the three-disk problem, the
effect of an external magnetic field on the scattering of
charged particles can be summarized as follows. Provided
the field-free case is hyperbolic, the system undergoes,
with increasing magnetic field at fixed particle energy,
four phases characterized by an ever decreasing degree of
chaos.

(i) Hyperbolic phase. All bounded orbits are strictly
hyperbolic and therefore the topological entropy does not
change. The magnetic field, however, makes these orbits
less unstable. Consequently, the average lifetime of scat-
tering trajectories gradually increases, the escape rate,
and the average Lyapunov exponent decreases. Simulta-
neously, the fractal dimension of scattering singularities
increases with the field strength.

(i) Pruning-dominated phase. By a further increase
of the field strength certain bounded orbits become sta-
ble and thus unaccessible to scattering trajectories. This
leads to a decrease of the topological entropy of the
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nonattracting invariant set underlying the scattering pro-
cess. The escape rate and the Lyapunov exponent de-
crease much faster than in the previous phase, but are
still different from zero. The fractal dimension exhibits a
rapid increase, but does not reach the value of unity yet.
In our billiard problem, pruning sets in before KAM tori
appear. In cases with smooth potentials these two events
are connected and pruning always implies nonhyperbolic-
ity. The size of the tori is, however, first microscopic and
one does not realize their presence on time and length
scales of the measurement. We thus expect the existence
of this phase in smooth potential cases too.

(iii) Torus-dominated phase. After KAM tori become
of macroscopic size, their stickiness drastically influences
the scattering process. The escape rate and the Lya-
punov exponent are identically zero independent of the
field strength and the fractal dimension of the singular-
ities in the time-delay function becomes unity. Conse-
quently, the scattering is no longer strictly chaotic, al-
though the topological entropy is still nonzero, marking
the presence of an infinity of (hyperbolic) orbits in the
system. The behavior in this phase is analogous to strong
intermittency and is accompanied by diverging fluctua-
tions in the thermodynamic functions. Another drastic
difference induced by the appearance of macroscopic tori
is the algebraic decay of the correlations characterizing
the scattering process in contrast to the exponential be-
havior in the previous phases.

(iv) Regular phase. When the cyclotron radius is suffi-
ciently small, no bouncing is possible among the poten-
tial hills. The number of bounded orbits is finite or zero.
Consequently, the topological entropy is identically zero
and the scattering process is no longer irregular.

The sequence of events described here might provide a
general scenario for the transition from chaotic to reg-
ular scattering, which occurs when the system is driven
away from hyperbolic behavior by the change of some
control parameter. In particular, by decreasing the par-
ticle energy in the three- or four-hill problem [7,2] (in the
absence of an external field) the system goes through the
phases described above, although their relative sizes in
energy may be very different from those in our example.
It is worth mentioning that the problem of a closed bil-
liard in the presence of a magnetic field has recently been
studied [29]. Just like in the field-free case [30], opening
a small hole in the billiard leads to an escape. Neverthe-
less, an infinity of bounded orbits survives, which form
a nonattractive chaotic set. Our results can thus be of
relevance for analyzing subsets of the chaotic domain in
closed billiards which are subject to external fields.
Finally, we discuss possible implications of our find-
ings to transport phenomena in semiconductor micro-
junctions [31,32]. If the size of such mesoscopic junctions
is less than the mean free path, transport is ballistic. It
has recently been shown [33,31] that many experimental
effects can then be reproduced by a model based on the
classical motion of electrons in hard-wall billiard mod-
els. The relevance of chaotic scattering in understanding
this phenomenon has also been emphasized [34,35]. In
semiconductors, at low temperature, a classical ballistic
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description can typically be valid if the number of reflex-
ions is not greater than about 10 [34], which is of the
order of magnitude that can easily be reached numeri-
cally. An external magnetic field seems to be the most
convenient experimental control parameter.

Even semiclassical results have been derived [35,36],
which lead to the striking observation that they contain
classical characteristics of the chaotic scattering process
as parameters. In particular, the conductance correla-
tion function averaged over an appropriate wave number
interval as a function of the wave number difference is
a Lorentzian function. Its half width is proportional to
the escape rate, which in hyperbolic cases is inversely
proportional to the chaotic lifetime 7 [35]. Other results
show that 7 also appears in the frequency-dependent ad-
mittance [37].

The junction type used most often is cross shaped,
which corresponds to a four-disk problem. This case can
be treated along similar lines as the three-hill problem
and would lead to the same qualitative results. Thus,
based on the magnetic field dependence of the escape rate
found in Sec. IV, we predict that, as long as chaotic scat-
tering is relevant, the half width of the conductance cor-
relation function monotonically decreases with increasing
magnetic fields. Formally, it tends to zero as soon as the
torus-dominated phase is reached, which implies that the
correlation function is no longer Lorentzian there. One
finds [38] that the correlation function then develops a
power-law singularity around the origin, the exponent of
which is connected with the exponent characterizing the
sticking probablity due to KAM tori.

Another effect of the KAM tori is that long periodic
trajectories in their vicinity can accumulate an anoma-
lously large signed area [35] and thus magnetic fluz com-
pared to orbits keeping away from tori. This property
causes a power-law decay around the origin in the mag-
netic field correlation function and leads to an increased
high-frequency part in the corresponding power spectrum
that is expected to show up in experimental data [39].
These and similar conclusions do not depend on the hard-
wall property. The smoothness of the scalar potential
might lead, however, to some new details, similarly as in
the field-free case [40].

A crossover from chaotic to nonchaotic scattering
(from Lorentzian to non-Lorentzian correlation func-
tions) could, in principle, be observed in the stadium
billiard used in the experiment of Marcus et al. [39] by
taking stadia with shorter and shorter straight sides lead-
ing finally to a circular billiard. In our paper we have
shown that a similar crossover can be studied in another
way much easier to realize experimentally by increasing
the magnetic flux in the fixed geometry of a three- or
four-disk scatterer.

We next add some remarks on the effects associated
with deviations of microjunctions from idealized billiards.
In a real device the boundary may be rough or inside the
scattering domain the potential could be bumpy. These
imperfections somewhat deflect the trajectory at each
collision from that of a perfect system and lead to de-
viations from specular scattering. Assuming that the
imperfections are distributed randomly, their effect can
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be considered as a stochastic perturbation of the sys-
tem. This can be simulated by adding a random angle
in the range (—am,an) to vy appearing in the Poincaré
map [Egs. (10) and (11)] at each collision with a be-
ing the amplitude of the noise (with the obvious restric-
tion that the reflected trajectory of the random system
may not penetrate into the disks). Such an investiga-
tion has recently been carried out in the case of circular
or stadium-shaped microstructures [41] and the qualita-
tive features should also hold in the three-disk geometry.
Thus we expect that the first levels of the hierarchical
structure of the chaotic invariant set survive a weak dis-
turbance by noise without substantial structural modifi-
cations. In the hyperbolic and pruning dominated phases
the characteristic numbers would just be shifted by some
amounts proportional to a. The effect of noise is most
drastic in the region corresponding to the deterministic
torus-dominated phase. Noise destroys KAM tori: they
do not disappear completely, but become perforated so
that scattering trajectories can enter the interior of the
original tori and leave it as well. This might lead to a
weakening of the stickiness effect and, consequently, to a
more pronounced hyperbolic behavior.

At last, we give an estimation of the characteristic val-
ues of the magnetic field for a system with linear size of
the order of magnitude of microjunctions. Since we mea-
sure the cyclotron radius in dimensionless units, the re-
lation between the dimensional magnetic field B and s is
given by B = mv/(elp)s~!, where e, m, and v denote the
charge, mass, and velocity of the electron, respectively,
and lp is the length unit. As we took the z coordinate
of two disks to be unity (see Fig. 1), lp now yields the
dimensional value of this coordinate in microjunction ge-
ometries. By choosing lop = 2.5 um and using v = 106
m/s, which is a realistic value for the Fermi velocity of
electrons in semiconductors, we find the following field
strengths for the geometry shown in Fig. 1 with aspect
ratio 7/d = v/3/2. The value where pruning first sets
in is B; = 1.8 T, while the torus-dominated phase lies
between By = 2.4 T and B, = 9.8 T. Since B is inversely
proportional to ly, a reduction of the linear size by a
factor implies the increase of the B values by the same
factor.
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APPENDIX A: THE POINCARE MAP

When a particle follows a circular orbit of cyclotron
radius s, the center of which is situated at P(p,q), and
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collides with a disk ¢ with center C(z;,y;) of radius r at
some point R (see Fig. 2), the angle v between the lines
PC and RC is easily obtained from the cosine theorem
as

w2 4+ r2 — g2

€8T = 2wr

) (A1)
where w is the length of the interval PC and depends on
pand gas w = [(p— ;)% + (g — v:)?]'/2. Since the image
point P'(p',q') is the mirror image of P with respect to
the line RC corresponding to a rotation of the angle 2
around C, the explicit form of the map T is obtained as

p =2+ (p— ;) cos2y — (¢ — yi)sin2y, (A2)

d=vi+ (- x;)sin 2y + (g — y;) cos 2. (A3)
It possesses a unit Jacobian as expected for the case of
Hamiltonian dynamics.

The Lyapunov numbers of periodic orbits of length n
can be computed from the n-fold iterated linearized map.
Thus they appear as solutions of quadratic equations of
the type A2 — 2Q)\ + 1, where 2Q stands for the trace of
the n-fold iterated linearized map along the cycle. The
largest Lyapunov numbers then have the form
1/2

A=Q+(Q*-1) (A4)

The Lyapunov number Ao of the bouncing orbit 01 is
obtained with

(A5)

Consequently, A¢ is independent of B. The Lyapunov
numbers A} and A_ of the ring orbits T and 0, respec-
tively, are found to have the form of Eq. (A4) with

Q =Q+ =cos(2y £ /3)

e i) (7). o

where siny = v/3p/(2w), cosy = £[1 — 3p?/(4w?)]Y/?,

= |s2_ d—@ " 4a._r
p=|s ( : ) ¢(¢§ ;) @
and
w? = (p:t %>2+d2 (A8)

APPENDIX B: FOUR-SCALE APPROXIMATION
TO THE FREE ENERGY

Hyperbolic chaotic sets in the field-free case of the
three-disk problem can successfully be described by two-
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scale approximations. This is a mathematical conse-
quence of the fact that all periodic orbits can be shad-
owed by two basic ones: they can be glued together from
short pieces which are very close to one-half of a bounc-
ing orbit and one-third of a ring orbit rotating between
the hills. The Lyapunov exponents of the bouncing orbit
and the ring orbit, respectively, are attributed to the cor-
responding orbit pieces such that the Lyapunov numbers
of an arbitrary orbit can approximately be obtained as
products of only two basic Lyapunov numbers.

Because of the broken C3, symmetry in the presence of
a magnetic field, we have in lowest order three indepen-
dent Lyapunov numbers determined in Appendix A. It is
a natural extension to work out a four-scale approxima-
tion expressing the fact that periodic orbits can be built
up from four different pieces: from thirds of the clock-
wise and the counterclockwise period-1 (ring) orbits and
from halves of the 01 and the 10 period-2 (bouncing) or-
bits. The transition probabilities from the symbol 0 to
symbols 00 and 01 are proportional to A~! and A;?, re-
spectively. Analogously, the transitions from the symbol
1 to the symbols 10 and 11 are proportional to Ay ! and
/\;1, respectively. Assuming asymptotic self-similarity,
such processes are characterized [42] by a 2 times 2 ma-

trix,
ATt gt
(Aal A:l) '
The escape « rate from the invariant set is obtained from
the largest eigenvalue of this matrix, which can be written
as exp (—k).

The entire free energy F(3) can also be obtained easily
using this approach. To this end, one generalizes the
matrix (B1) to a O-dependent one by replacing in each
element the exponents —1 by —(3. Then the free energy
follows from the largest eigenvalue exp [—3F(3)] of this
matrix. Thus we obtain

(B1)

e—BF(B) — %{(/\;ﬁ + /\:ﬂ)

+{(ATP = AZP)2 1 ang %P2y, (B2)

Since hyperbolicity holds for weak magnetic fields, the
four-scale approximation is expected to work for large
cyclotron radii s. In leading order in 1/s we obtain

A=A (1 + é) (B3)
with
A= ((Zd - ﬁr)g)l/z . (B4)
The quantity
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is the Lyapunov exponent of the ring periodic orbit with-
out field. By substituting this into the four-scale approx-
imation of the free energy, we obtain in leading order

2 g2 28
pF ) =8R8 - 5 5 () T3 parag B9

where Fy(3) stands for the free energy of the field-free
case in the two-scale approximation and
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(B7)

/\0=2r—d[1+(1—£)1/2:|-—1

Since the correction term is negative, the graph of BF(0)
vs [ is less steep for positive 3 than in the field-free case.
The decrease of the average Lyapunov exponent A and
the escape rate x as well as the increase of the fractal
dimension D follows from this property. Explicit results
can be obtained from relations (4)—(7).
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FIG. 4. The chaotic set and the time delay function of the three-disk system for values of the cyclotron radius s when the
chaotic set is hyperbolic. (a) The chaotic set for s = 10; the inset shows the structure of the rightmost and upper right blocks
obtained by an affine transformation. (b) The chaotic set for s = 1.25. The straight line, which is parallel to the unstable
manifold of the 01 orbit, illustrates the type of initial conditions taken for the time delay functions in this figure and throughout
the paper. (c) and (d) display the time delay functions corresponding to (a) and (b), respectively. X is the coordinate along
the line of initial conditions measured from the crossing with the p axis (X > 0 for ¢ > 0). The narrow hole marked by R in
(d) corresponds to the first-level large central hole of (c) (see text).
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FIG. 5. (a) The chaotic set for s = 1.0 when pruning has set
in. Some corners of the blocks have collided and disappeared.
(b) The corresponding time delay function. The first level
hole R of Fig. 4(d) is missing here.
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FIG. 6. The chaotic set for s = 0.9 (a) and 0.8 (b) with stable islands and the corresponding time delay plots [(c) and (d),

respectively].
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